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Abstract—High-latency anonymous communication systems
prevent passive eavesdroppers from inferring communicating
partners with certainty. However, disclosure attacks allow an
adversary to recover users’ behavioral profiles when communi-
cations are persistent. Understanding how the system parameters
affect the privacy of the users against such attacks is crucial.
Earlier work in the area analyzes the performance of disclosure
attacks in controlled scenarios, where a certain model about the
users’ behavior is assumed. In this paper, we analyze the profiling
accuracy of one of the most efficient disclosure attack, the least
squares disclosure attack, in realistic scenarios. We generate real
traffic observations from datasets of different nature and find
that the models considered in previous work do not fit this
realistic behavior. We relax previous hypotheses on the behavior
of the users and extend previous performance analyses, validating
our results with real data and providing new insights into the
parameters that affect the protection of the users in the real
world.

Index Terms—anonymity, mixes, performance analysis

I. INTRODUCTION

Mixes aim at providing anonymity in communication net-
works by acting as routers that hide the correspondence
between senders and receivers of messages. These anonymous
communication channels operate by gathering the messages
they receive, changing their appearance cryptographically and
outputting them in batches, in what are called rounds of
mixing. However, providing perfect anonymity through mixes
is not possible in practice, due to constraints in the bandwidth
of the communication channel and the delay tolerated by users.
Because of this, an adversary observing the system in the
long-term may infer the frequency with which a certain sender
communicates with a certain receiver by means of a disclosure
attack [1], [2], [3], [4], [5]. One of these strategies, called
the Least Squares Disclosure Attack (LSDA) [5], [6], [7],
has been proven to outperform previous statistical variants [8]
while keeping its computational cost much lower than more
sophisticated approaches, such as [4]. One advantage of LSDA
is that it is particularly suitable for analysis, due to the
availability of closed-form expressions for its prediction error
in terms of the system parameters. Such performance analysis
is of paramount importance since it helps the designer of mix-
based anonymous communication systems to understand how
to improve the protection of the users.

Previous works analyze the prediction error of LSDA in
mix-based systems [5], [6], [7], [8] under specific assumptions
on the users’ and mix behavior. However, these results have
only been confirmed by computer-generated observations and
therefore it is not clear whether they apply in real-world
scenarios. In this document, we delve into how users behave
in reality. We gather data from real databases of different
nature, which we then use to show that previous analyses of
the attack fall short when tested against real data. We analyze
the hypotheses that are needed for the performance analysis of
LSDA to be applicable in real-world scenarios and develop a
new generalized closed-form expression for the attacker’s error
when estimating the relationships between users in mixes,
which we then evaluate with real traffic. Real-world datasets
have been used in other works to compare between different
disclosure attacks [9] or to analyze the properties of real
traffic [10]. Our approach is different, as we are interested
in understanding the effects of real-world user behavior on
the performance of the least squares disclosure attack.

The document is structured as follows: we describe the
least squares attack in the following section, together with the
system model and notation we use in the paper. In Sect. III,
we study the statistical properties of real-world behavior in our
system. We carry out and evaluate a new performance analysis
of LSDA in Sect. IV, and conclude in Sect. V.

II. THE LEAST SQUARES DISCLOSURE ATTACK

The Least Squares Disclosure Attack (LSDA), introduced
by Pérez-González and Troncoso in [5], estimates the in-
tensity of the communication between each sender-receiver
pair in a mix-based anonymous channel by solving a least
squares problem. This intensity is represented by the transition
probabilities pj,i, which model the average probability that
a message sent by sender i ∈ {1, 2, · · · , N} is addressed
to receiver j ∈ {1, 2, · · · ,M}. These probabilities are com-
monly grouped per sender in the so-called sending profiles,
qi

.
= [p1,i, · · · , pM,i]

T . An attacker that observes the number
of messages sent and received during ρ communication rounds
obtains the LSDA estimator by solving

P̂ =
(
UTU

)−1
UTY , (1)
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Fig. 1: System model during the communication round r.

where P̂ is a N ×M matrix containing the estimation of the
transition probability p̂j,i in its i, jth entry, U is a ρ × N
matrix containing the amount of messages sent by sender i
in round r, denoted xr

i , in its r, ith entry, and Y is a ρ×M
matrix with the number of messages received by receiver j
in round r, denoted yrj , in its r, jth entry. Figure 1 shows an
example of the system and notation employed. The estimator
in (1) was proven to be unbiased and asymptotically efficient,
in the sense that its variance approaches zero as the length
of the observation window ρ increases [5], [7], in mix-based
systems where all messages leave the mix in each round.

Denoting the jth column of P by pj
.
= [pj,1, · · · , pj,N ]T ,

and the jth column of Y by yj
.
= [y1j , · · · , y

ρ
j ], (1) can be

decoupled as
p̂j =

(
UTU

)−1
UTyj . (2)

This latter formulation is specially useful to carry out a
performance analysis of the attack.

III. MODELING REAL-WORLD BEHAVIOR

In this section, we study real-world user behavior from
observations generated with real traffic, showing that previous
performance analyses of LSDA are not valid in this scenario
because the assumptions they are based on are rather unrea-
listic. We propose alternative hypotheses that are adequate to
model real-world user behavior, which we then use in Sect. IV
to assess the performance of the LSDA estimator.

A. Generating real-world observations

In order to analyze real-world behavior, we have chosen
to generate observations by taking real traffic from datasets
of different nature, whose users could have relied on mix-
based systems to enhance their privacy, and anonymize this
traffic using different mix configurations. We work with three
datasets, whose basic information is summarized in Table I:

1) Email: This dataset contains around 220 000 emails
sent from 294 different email addresses, which have
been extracted from the Enron corpus.1 Messages with
multiple recipients are treated as different messages sent
simultaneously, one for each recipient.

2) Location: This dataset contains around 400 000 location
check-ins taken from the 500 most active users of
Gowalla social networking website.2 Users checking-in
are considered as the senders, while the locations form

1http://www.cs.cmu.edu/∼./enron/
2http://snap.stanford.edu/data/loc-gowalla.html

TABLE I: Basic information of the datasets.

Dataset No. messages Duration (hours) Senders Receivers
Email 220 032 32 416.8 294 17 017

Location 406 484 4 344.0 500 559
MailingList 178 937 76166.4 500 510

the set of receivers. We consider only the 500 most
active users for computational reasons: LSDA works
with large-size matrices which grow with the number
of senders and receivers of the system.

3) MailingList: we have processed the public mailing lists
of Indimedia,3 obtaining almost 180 000 messages from
the 500 most active senders. Each mailing list is consi-
dered as a receiver, while users posting to these mailing
lists are senders.

We anonymize the traces from these datasets using two
types of mixes, which differ in the event that triggers the
flushing of messages:

1) Threshold mix: this mix gathers messages until it has
stored t of them, and then forwards each one to its
correspondent recipient.

2) Timed mix: this mix stores the messages it receives
and, after a period of time τ , outputs each one to their
recipients.

To generate the adversary’s observations, we choose values
of t and τ that provide an acceptable degree of anonymity
while keeping the delay of messages under a reasonable bound.
We adopt the following criteria: in the threshold mix, we
choose a value t = 100 and, in the timed mix, we select values
of τ to ensure that ≈ 100 messages are mixed on average
per round, while also considering that a delay of more that
24 hours is intolerable for users. This makes τ = 12 hours
for Email, τ = 1 hour for Location and τ = 24 hours for
MailingList, with an average of ≈ 100 messages per round
in the first two, and ≈ 57 in the latter. The result of this
anonymization is a set of observations from {Xr

i } and {Y r
j }.

B. Modeling the input process

The input process, {Xr
i }, which models the amount of

messages from each user arriving to the mix in each round, is
determined by the frequency with which users send messages
and by the firing condition of the mix. When the anonymiza-
tion channel is a threshold mix, previous analyses [5], [6],
[8] assume that the input process follows a multinomial
distribution, and, when the channel is a timed mix, authors
in [7] assume that the number of messages each user sends to
the mix can be independently modeled as a Poisson process.

In Fig. 2, we compare the histogram of the inputs {Xr
i }, ob-

tained using the observations generated with our datasets, with
the theoretical values given by the multinomial and Poisson
models (in the threshold and the timed mixes, respectively).
Here, the last bin of the histogram contains all occurrences
of Xr

i ≥ 50. We conclude that the theoretical models fit the

3http://lists.indymedia.org/

http://www.cs.cmu.edu/~./enron/
http://snap.stanford.edu/data/loc-gowalla.html
http://lists.indymedia.org/


histogram for low number of messages Xi, but fail at capturing
the large values.

In the analysis in this document, we do not assume a
specific distribution for {Xr

i }, but consider that it is a generic
stationary process that satisfies the relation

Cov {Xk, Xm} ≪ Var {Xk} ∀k,m k ̸= m (3)

and, additionally,

Cov {Xk, XmXn} ≪ Cov
{
X2

k , Xk

}
(4)

Cov
{
X2

k , XmXn

}
≪ Cov

{
X2

k , X
2
k

}
(5)

for all k, m, n except when k = m = n. These assumptions
mean, in other words, that the participation of a user in a
given round is uncorrelated with the participation of each other
user in that round. We have validated these hypotheses by
computing the different sample covariances from our datasets,
as shown in Table II.

C. Modeling the output process

A crucial point when carrying out a performance analysis
of disclosure attacks on mixes is selecting a model for the
distribution {Y r

j |Xr
1 , · · · , Xr

N}, which represents how users
choose the recipients of their messages in each round. A
known property of this distribution, given by the definition
of sending profiles, is that E {Y|U} = U ·P. However, this is
true for many distributions. Every previous analysis of LSDA
assumes that the choice of recipients is stationary and that
{Y r

j |Xr
1 , · · · , Xr

N} follows a multinomial model, i.e.,

{Y r
1 , · · · , Y r

M |U} ∼
N∑

k=1

Multi (xr
k,qk) . (6)

This model is adequate in scenarios where users choose the re-
cipients of each of their messages in each round independently.
However, when users tend to focus on a single receiver in each
round, (6) is not suitable to model the output distribution.

In this work, we assume two models for {Y r
j |Xr

1 , · · · , Xr
N}

that are examples of how users can distribute their messages
among the receivers while satisfying E {Y|U} = U ·P:

1) A multinomial model, given by (6), as an example of
users that cause low variance output.

2) A maximum variance model, given by

{Y r
1 , · · · , Y r

M |U} ∼
N∑

k=1

xr
k · Multi (1,qk) . (7)

When using these distributions, we are implicitly assuming
that the choices of recipients of different senders within the
same round are uncorrelated, and that the choice of recipients
of the same user between rounds can be also considered
uncorrelated. Our experiments in Sect. IV-2 confirm that the
results we obtain with these approximations are accurate.

To illustrate how users’ behavior changes between scenar-
ios, we have computed the average number of recipients each
sender chooses in each round of the observations generated
with our datasets, as a function of the number of messages

sent. This is displayed in Table III. As a reference, the average
number of senders’ contacts in each dataset is 125.7 in Email,
16 in Location and 9.6 in MailingList. These results show that
users in the Email dataset tend to spread their messages among
their contacts, behaving close to (6), while users in Location
and MailingList focus on a single recipient in each round, as
in (7).

IV. EXTENDED PERFORMANCE ANALYSIS OF THE LEAST
SQUARES DISCLOSURE ATTACK

We now assess the profiling accuracy of the Least Squares
Disclosure Attack with the assumptions in the input and output
processes proposed in the previous section, which we have
validated with traffic from real-world scenarios. The profiling
accuracy is measured as the Mean Squared Error (MSE)
between the attacker’s estimation of the sending profiles of the
users and their real values, i.e., MSEi

.
=
∑N

j=1 |pj,i − p̂j,i|2.
This analysis generalizes previous ones [5], [6], [8], [7],
accommodating different types of mixes and being able to
model real-world behavior, at the expense of accuracy.

1) Theoretical approximation of the average MSE: Our
goal is to obtain an approximation of the average MSEi when
using (1) to estimate the sending profiles, where this average
is computed over all the realizations of U and Y obtained
with users’ average behavior P. For simplicity, we omit the
conditioning on P in the derivations below.

For the analysis in this section, we introduce additional
notation regarding the statistics of the input and output
processes. We use µ(i) to refer to the expected value of
Xi, and µn(i) is its nth central moment. Vector µ con-
tains all µ(i) for each sender, i.e., µ .

= [µ(1), · · · , µ(N)]T .
Matrix M contains these values arranged in its main di-
agonal, i.e., M

.
= diag{µ(1), · · · , µ(N)} and, similarly,

Mn
.
= diag{µn(1), · · · , µn(N)}. We use the parameter sj,i

.
=

pj,i(1 − pj,i), which is closely related to the variance of the
outputs, and the diagonal matrix Sj

.
= diag{sj,1, · · · , sj,N}.

Finally, we define the uniformity of the sending profile of user
i as υi

.
= 1−

∑M
j=1 p

2
j,i. The uniformity gives an idea of how

random the behavior of a user is, and ranges from 0, when
sender only has one contact, to (M − 1)/M , when this user
sends messages to all the receivers with the same probability
during the observation period. Note that

∑M
j=1 sj,i = υi.

We start the derivations by showing that the LSDA estimator
is unbiased. This is straightforward from the fact that, given a
matrix of input messages U and the average behavior of the
senders P, the expected value of the output is

E {Y|U} = U ·P (8)

where E {·} is taken along all the possible assignments of
the messages in U to the receivers, following P. Using
(8) together with (1), we get E{P̂} = P (alternatively,
E {p̂j} = pj). This property allows to write, using the law
of total variance,

Σp̂j
= E

{
Σp̂j |U

}
= E

{
(UTU)−1UTΣYj |UU(UTU)−1

}
(9)
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(a) Email, threshold mix, t = 100.
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(b) Location, threshold mix, t = 100.
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(c) MailingList, threshold mix, t = 100.
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(d) Email, timed mix, τ = 12h.
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(e) Location, timed mix, τ = 1h.
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(f) MailingList, timed mix, τ = 24.

Fig. 2: Histograms representing the amount of messages each user sends in each round, compared to the approximation given
by the theoretical models assumed in previous works (line). The last bin contains all occurrences of Xr

i ≥ 50.

TABLE II: Average values for different sample covariances of the input process in the datasets.

Email Location MailingList
t = 100 τ = 12 t = 100 τ = 1 t = 100 τ = 24

|Cov {Xk, Xk} | 7.1 20.1 2.0 2.4 2.9 4.6
|Cov {Xk, Xm} | 0.1 0.2 0.0 0.0 0.0 0.0

|Cov
{
X2

k , Xk

}
| 415.9 5815.0 57.2 159.9 171.4 2076.1

|Cov {XkXm, Xk} | 1.0 15.1 0.3 0.5 0.2 0.5
|Cov

{
X2

k , Xm
}
| 1.9 12.8 0.3 0.5 0.5 0.7

|Cov {XkXm, Xn} | 0.0 0.3 0.0 0.0 0.0 0.0

|Cov
{
X2

k , X
2
k

}
| 32943.2 2974803.8 2412.7 39132.0 13666.8 1381640.2

|Cov
{
X2

k , XkXm
}
| 30.1 4038.3 6.6 27.2 7.0 189.6

|Cov
{
X2

k , X
2
m

}
| 51.2 786.2 4.5 10.4 8.9 24.8

|Cov
{
X2

k , XmXn
}
| 0.7 16.2 0.1 0.2 0.1 0.2

TABLE III: Average number of recipients chosen by the
senders in each round, as a function of the number of messages
sent.

# messages (Xi) = 2 = 3 = 4 = 5 ≥ 6

Email t = 100 1.85 2.71 3.53 4.40 13.56
τ = 12h 1.85 2.69 3.49 4.32 14.02

Location t = 100 1.03 1.05 1.06 1.08 1.11
τ = 1h 1.10 1.14 1.17 1.18 1.26

MailingList t = 100 1.29 1.46 1.53 1.53 1.57
τ = 24h 1.28 1.49 1.56 1.55 1.71

where ΣYj |U
.
= E

{
(Yj − E {Yj |U})(Yj − E {Yj |U})T |U

}
.

Since we have assumed that the input process is stationary,
using the Law of Large Numbers and considering that the
number of rounds observed ρ is large enough, we approximate

lim
ρ→∞

UTU/ρ → Rx (10)

where Rx is the autocorrelation matrix of the input process,
i.e., an N × N symmetric matrix whose m,nth element is
E {XmXn}. Using (3), we write this matrix as

Rx ≈ µµT +M2. (11)

The inverse of (11) can be computed applying the Sherman-
Morrison formula [11], which gives us

R−1
x ≈ M−1

2

(
IN − γµµTM−1

2

)
(12)

where γ
.
= 1/(1 + µTM−1

2 µ). Therefore, when the number
of rounds observed is large, (9) can be approximated as

Σp̂j
≈ 1

ρ
R−1

x RxyxR
−1
x . (13)

where the middle term is Rxyx
.
= 1

ρE
{
UTΣYj |UU

}
. In

order to compute the covariance matrix ΣYj |U, we analyze
separately the two scenarios (6) and (7) we consider for the
distribution of the output process given the inputs.



a) Multinomial model: Using (6) together with our as-
sumptions, we approximate the middle term of (13) as

Rxyx ≈

(∑
k=1

µ(k)sj,k

)
·
(
µµT +M2

)
+M3Sj . (14)

Finally, plugging (12) and (14) into (13) and performing matrix
multiplications we obtain Σp̂j

. Then, taking the i-th diagonal
element of this matrix, which is Var {p̂j,i}, adding this element
along j, and further considering

∑N
k=1,k ̸=i µ

2(k)/µ2(k) ≫ 0
for all i ∈ {1, · · · , N}, we obtain:

MSE−
i ≈ 1

ρ
· 1

µ2(i)

(
N∑

k=1

µ(k) · υk +
µ3(i)

µ2(i)
· υi

)
(15)

b) Maximum variance model: We now analyze the per-
formance of the LSDA estimator when the output distribution
is (7). In that case, the middle term of (13) becomes

Rxyx ≈

(
N∑

k=1

(µ(k)2 + µ2(k))sj,k

)
·
(
µµT +M2

)
+M4Sj .

(16)
Operating as explained before to obtain the MSE in the
estimation of the sending profile of user i, we get

MSE+
i ≈ 1

ρ
· 1

µ2(i)

(
N∑

k=1

(
µ(k)2 + µ2(k)

)
· υk +

µ4(i)

µ2(i)
· υi

)
(17)

The formulas (15) and (17) provide new insights into how
LSDA’s error depends on the system parameters. This error
decreases with ρ, since it becomes easier for the attacker to
estimate the behavior of the users as more observations are
available. The variance of the input process Xi decreases the
estimation error of qi, i.e., it is easier to separate the sending
behavior of a user from the others when we have rounds where
that user participates a lot as well as rounds where that user is
not present. The MSEi also increases with the contribution of
all senders to the output variance, more strongly when users
behave as in (7) than as in (6). The role of the uniformity of
the profiles υk in the MSE is also very relevant: estimating the
sending profiles is a much easier task when users only contact
very few receivers (i.e., low υk) than when they distribute their
messages among a larger population (i.e., υk close to 1).

2) Evaluation: We now evaluate our formulas, applying
LSDA to the anonymized traces of real traffic. For each
dataset, mix configuration, and number of rounds observed
ρ ∈ {0.1ρmax, 0.2ρmax, · · · , ρmax}, where ρmax is the total
number of rounds in the observations, we perform LSDA
and compute the real MSEi. We then represent the average
MSEi of those users i that meet three conditions: they are
among the 40% most active users, they belong to the 40%
users that remain active for the largest number of rounds, and
furthermore they participate before 0.3ρmax rounds have been
observed. We do this to avoid sporadic peaks in the average
MSEi, which are the result of estimating the sending profile
of a user that barely participates in the system, and to be able
to see the trend of the MSE with clarity.

Figure 3 shows this average MSEi for the Email, Loca-
tion and MailingList datasets, together with the theoretical
formulas MSE−

i and MSE+
i in (15) and (17). We only plot

the theoretical approximation that better suits each scenario:
MSE−

i in the Email experiments and MSE+
i in the Location

and MailingList experiments. We also plot the theoretical MSE
from previous works, denoted by MSEold, which has been
taken from [8] and [7] for the threshold and the timed mix
experiments, respectively. We set the limits of the vertical axis
to the same value in all figures to ease the comparison between
them. These limits make early values of the MSE (low ρ) to
fall outside the plot, but allow to see with more detail the
performance of the attack for large values of ρ. We do this on
purpose: we are predicting the asymptotic MSEi of the attack,
so the results for low values of ρ are not significant in our
evaluation.

We see that our approximations improve those given by
previous work, especially in those scenarios where the multi-
nomial model for the choice of recipients is not appropriate
(Location and MailingList). We note that the number of rounds
we can generate with the Email database in Fig. 3d is not large
enough to appreciate this improvement, due to the spike we
observe in that experiment at early values of ρ. This sudden
increase of the MSE, as well as the one in Fig. 3c, happens
for two reasons: first, when the number of rounds observed is
small, it is easier for the matrix UTU to be ill-conditioned,
which results in a poor estimation of the sending profiles
(cf. (1)), and therefore in a large MSE in the realization.
This spike is not predicted by our theoretical formulas, since
they approximate the average MSE. On the other hand, in the
Email dataset, most of the users whose MSEi we average start
sending messages when the adversary has observed around
30% of the total number of rounds. This causes an increase
in the MSEi at around ρ = 600, as we are adding users to
the average MSEi that have barely participated in the system.
The average MSEi stabilizes as the number of rounds observed
increases since the number of users used for the computation
of the average MSEi we represent remains unchanged.

In all cases, the MSEi decreases as the number of observed
rounds ρ increases, as predicted by our formulas, except for
the spikes in Figs. 3d and 3c whose origin we have already
explained. Due to these spikes, comparing the results of the
experiments in the Email and MailingList datasets is not
possible. However, we can see that the MSE in the experiments
with Location is stable, and always larger in the threshold
mix scenario (Fig. 3b). The reason for this is the following:
the variance of the the input process in a threshold mix is
smaller than that in a timed mix for the same average number
of messages sent per round. This is the the case in the Location
experiments, since the number of rounds we generate in the
threshold and timed mix experiments is approximately the
same. As predicted by our theoretical formulas, a system
with lower input variance provides more protection against
the LSDA attacker.
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(a) Email, threshold mix, t = 100.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.5

1

1.5

2

2.5

3

3.5

4

Number of rounds (ρ)

 

 

Real MSE

MSE
+

MSE
old

(b) Location, threshold mix, t = 100.
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(c) MailingList, threshold mix, t = 100.
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(d) Email, timed mix, τ = 12h.
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(e) Location, timed mix, τ = 1h.
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Fig. 3: Average MSEi evolution with ρ using the Email, Location and MailingList datasets, for different types of mixes.

V. CONCLUSIONS

We have analyzed the effects of real-world user behavior
in the performance of the least squares disclosure attack [5]
in mix-based anonymous communication systems, considering
mixes that do not delay messages between communication
rounds. To validate our work, we have obtained real traffic
observations from three publicly available datasets of different
nature: emails sent between the employees of a company,
location check-ins from an online social network, and users’
posts to mailing lists. By studying these data, we confirm that
the hypotheses upon which former analyses of the least squares
disclosure attack are based [5], [6], [7] are not adequate to
model real-world behavior, and hence we formulate new ones.
Based on these new assumptions, we develop a generalized
performance analysis of the attack, which we validate with our
datasets, confirming that it accurately models the estimation
error of the attacker in the considered realistic scenarios. This
analysis accommodates a wide variety of mix and users’ be-
havior, and provides new insights into the statistics that affect
the protection of the users: the variability in the participation
of the users in the system contributes to the attacker’s success,
while the variability in the messages received by users worsens
the attacker’s estimation.
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